Airborne Compact Atmospheric Mapper (ACAM)

Goddard Space Flight Center Atmospheric Chemistry and Dynamics Branch

Team members:

Scott Janz PI

Paul Newman CO-I

Omar Torres Aerosols

Kent McCullough Technician

Robert Frederickson Mechanical Design

John Riley Electrical Design

Matt Kowalewski Calibration

ACAM Test-flight Objectives

- Provide visible cloud and surface information for AURA satellite instruments.
- Determine whether "off-the-shelf" miniature spectrograph systems are stable enough and have sufficient S/N to perform trace gas retrievals for validation.
- Make remote sensing observations of tropospheric pollutants: O₃, NO₂, SO₂, and aerosols at high spatial resolution.

Instrumentation

- Two high-resolution digital Cameras
 - Cockpit mount: Forward viewing of vertical and lateral cloud structure
 - Nikon 8700 Digital camera (3,264 x 2,448 pixels) preprogrammed to shoot 1 frame every 30 seconds.
 - Wing Hatch: Nadir viewing cloud cover and scene identification
 - Camera: Nikon 8800° Digital camera (3,264 x 2,448 pixels) preprogrammed to shoot 1 frame every 20 seconds.
 - Has 10X optical zoom and vibration reduction.

Two Scanning spectrographs

- Channel 1: 300-380 nm, 1.0 nm nominal spectral resolution
- Channel 2: 360-550 nm, 1.2 nm nominal spectral resolution
- +/- 30 degree scan mirror with common telescope and fiber optic feed to spectrographs
- Experiment housing is sealed to maintain atmospheric pressure and has survival heaters.

AVE Science Team Meeting 19-20 September 2005

1st Flight-6/09/2005

WB-57 ACAM locations

AVE Science Team Meeting 19-20 September 2005

Scan Pattern

ACAM scan pattern at 18 km altitude

-13 steps/scan

IFOV= 4.6 degrees

 $\sim 0.5 \text{ sec/step}$

Nikon Rep. Time = 20 sec.

•1800 scans/flight

AVE Science Team Meeting 19-20 September 2005

Flight Performance and Current Status

- AVE-June05 Flights 2–8 successful
 - Internal moisture condensation limited usefulness on flights
 1&2. Fixed for subsequent flights.
 - Scene imagery from digital cameras worked flawlessly for nadir, intermittently for cockpit camera.
 - Post-mission calibrations of the spectrographs have been performed to check for instrument stability.
 - Post-mission assessment of performance for O₃, NO₂, and aerosols ongoing.
 - NO₂ retrievals successful but sensitivity is low.
 - O₃ retrievals (DOAS) unsuccessful due to optical bench temperature effects.
 - Aerosol/Reflectivity retrievals ongoing, promising.
 - Planning for next mission and upgrades in progress.

Image archives

http://avdc.gsfc.nasa.gov/Data/Browse/index.html

Two versions, full resolution and 1/4 resolution

Movies(quicktime 7 required)

http://code916/Public/Ground_based/acam/acam.html

AVE Science Team Meeting 19-20 September 2005

Absolute Calibration

- •Two techniques used, sphere+QTH lamp using ACAM as a transfer radiometer and direct spectralon+QTH calibration
- •Both techniques agree at the 1% level for the VIS channel and sub-3% level for the UV channel (Sphere transfer is noisy here)
- •2% post-flight to pre-flight decrease in sensitivity observed due to loss of AR coating on the 1st surface of the window.

Plate/lamp comparisons show consistency among standards

Wavelength [nm]

500

350

Plate vs. Sphere Technique agree, plate calibration used for lv0-lv1 calibration due to superior SNR.

In-flight Temperature effects

- Changes in system response
- Degradation of slit function
- •Shifts in wavelength registration

UV Channel slit resolution and line center shift

VIS Channel slit resolution and line center shift

- •Effects are dependent on position within the sensor.
- •Worse toward edges (warping).
- •Pixel shifts of 1-3 pixels VIS channel and 4-8 pixels UV
- •Resolution degrades from 1.2 nm [0.8 UV] to 1.8 nm [1.5 UV]

System response changes with optical bench temperature.

Results - Radiances

Results – Aerosol Index/360 nm Reflectivity

Scan angle dependence apparent, need to fix

geometry.
AVE Science Team Meeting 19-20 September 2005

NO2 Retrievals- Dallas/Fort Worth

Conclusions

- •Need to install spectrograph heaters and control software for next flight!
- •Nikon imagery works very well and should be useful to the community, particularly for developing ozone and aerosol retrievals.
- Aerosol and radiance product will likely be of good quality.
- •NO₂ is marginal for this set of flights, should improve for next as temperature is stabilized.
- •Ozone retrievals will need a TOMS-type algorithm due to poor slit functions in the UV, much work needed here.
- •SO₂, haven't looked for it yet but unlikely due to degraded resolution.